Линейное сглаживание по пяти точкам



Рис. 14. 15 Линейное сглаживание по пяти точкам

Можно повысить эффективность сглаживания, увеличивая число точек, используемых для статистической обработки заданной точки, и перейдя к кривой сглаживания в виде отрезка полинома более высокой степени, чем 1 Так, известны формулы нелинейного сглаживания по семи точкам [1, 2, 28] Этих формул семь по три для крайних точек и одна для остальных Для нели нейных зависимостей, близких к параболическим или содержащих отрезки парабол, нелинейное сглаживание гораздо более эффективно, чем линейное Тем не менее и здесь гладкость кривой сглаживания невелика

Единого мнения о целесообразности повторения процедуры сглаживания у математиков нет Одни считают, что повторное сглаживание делает кривую сглаживания более плавной Другие не рекомендуют применение повторного сглаживания В целом сглаживание — эффективный инструмент предварительной обработки исходных данных Затем можно использовать более тонкие методы их обработки, например фильтрацию на основе спектрального анализа и синтеза, полиномиальную регрессию с применением полинома определенного порядка и т д



Содержание раздела